Các hằng đẳng thức mở rộng lớp 8 và bài tập (Có đáp án)
Nhằm mục đích giúp học sinh dễ dàng nhớ và nắm vững các công thức Toán lớp 8, chúng tôi đã chọn lọc tài liệu các hằng đẳng thức mở rộng đầy đủ công thức, lý thuyết và bài tập tự luyện giúp học sinh vận dụng và làm bài tập thật tốt môn Toán lớp 8.
Một số hằng đẳng thức mở rộng
- Hằng đẳng thức bậc 2 mở rộng
( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
( a - b + c )2 = a2 + b2 + c2 – 2ab – 2bc + 2ac
( a + b + c + d)2 = a2 + b2 + c2 + d2 + 2ab + 2bc + 2ac + 2ad + 2bd + 2cd
- Hằng đẳng thức bậc 3 mở rộng
( a + b + c )3 = a3 + b3 + c3 + 3 ( a + b )( a + c )( b + c )
a3 + b3 + c3 – 3abc = ( a + b + c )( a3 + b3 + c3 – ab – ac – bc )
a3 + b3 = ( a + b )3 – 3ab( a + b )
a3 - b3 = ( a - b )3 + 3ab( a – b )
- Hằng đẳng thức bậc 4
( a + b )4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
- Hằng đẳng thức bậc 5
( a + b )5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 +b5
Bài tập có đáp án
Bài 1: Tìm x biết
a) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
Lời giải:
a) Áp dụng các hằng đẳng thức ( a - b )( a2 + ab + b2 ) = a3 - b3.
( a - b )( a + b ) = a2 - b2.
Khi đó ta có ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0 ⇔ x = 27/4.
Vậy giá trị x cần tìm là x= 27/4 .
b) Áp dụng hằng đẳng thức ( a - b )3 = a3 - 3a2b + 3ab2 - b3
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi đó ta có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6 ⇔ x = - 1/2.
Vậy giá trị x cần tìm là x= - ½
Bài 2: Rút gọn biểu thức:
A = (x – 2y).(x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
Lời giải:
Áp dụng hằng đẳng thức:
a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:
A = (x – 2y). (x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
A = x3 – (2y)3 - [x3 + (2y)3]
A = x3 – 8y3 – x3 – 8y3 = -16y3
Bài 3: Tìm x biết x2 – 16 + x(x – 4) = 0
Lời giải:
Ta có: x2 – 16 + x(x – 4) = 0
⇔ (x + 4). (x - 4) + x.(x – 4) = 0
⇔ (x + 4 + x).(x - 4) = 0
⇔ (2x + 4). (x - 4) = 0
⇔ 2x + 4 = 0 hoặc x – 4 = 0
* Nếu 2x + 4 = 0 thì x = -2
* Nếu x – 4 =0 thì x = 4
Vậy x = -2 hoặc x = 4.
Bài 4: Tính giá trị của biểu thức
A = 8x3 + 12x2y + 6xy2 + y3 tại x = 2 và y = -1.
Lời giải:
Áp dụng hằng đẳng thức ( a + b )3 = a3 + 3a2b + 3ab2 + b3.
Khi đó ta có:
A = 8x3 + 12x2y + 6xy2 + y3 = ( 2x )3 + 3.( 2x )2.y + 3.( 2x ).y2 + y3 = ( 2x + y )3
Với x = 2 và y = -1 ta có A = ( 2.2 - 1 )3 = 33 = 27.
Bài 5: Tính nhanh kết quả các biểu thức sau:
a) 127² + 146.127 + 73²
b) 98.28– (184 – 1)(184 + 1)
c) 100² – 99² + 98² – 97² + …+ 2² – 1²
d) (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)
Lời Giải
a) A = 127² + 146.127 + 73²
= 127² + 2.73.127 + 73²
= (127 + 73)²
= 200²
= 40000 .
b) B = 9 8 .2 8 – (18 4 – 1)(18 4 + 1)
= 188 – (188 – 1)
= 1
c) C = 100² – 99² + 98² – 97² + …+ 2² – 1²
= (100 + 99)(100 – 99) + (98 + 97)(98 – 97) +…+ (2 + 1)(2 – 1)
= 100 + 99 + 98 + 97 +…+ 2 + 1
= 5050.
d) D = (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)
= (20² – 19²) + (18² – 17²) + (16² – 15²)+ …+ (4² – 3²) + (2² – 1²)
= (20 + 19)(20 – 19) + (18 + 17)(18 – 17) + ( 16 +15)(16 – 15)+ …+ (4 + 3)(4 – 3) + (2 + 1)(2 – 1)
= 20 + 19 + 18 + 17 + 16 +15 + …+ 4 + 3 + 2 + 1
= 210
Hy vọng rằng với những ví dụ và các hằng đẳng thức mở rộng trên đây sẽ giúp cho bạn có một kiến thức nền vững chãi cho môn Toán nói chung và phần hằng đẳng thức nói riêng.